ToPS
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
tops::AkaikeInformationCriteriaThis class implements the Akaike Information Criteria
tops::AlphabetA class representing Alphabet
tops::BayesianInformationCriteriaBayesian Information Criteria
tops::BernoulliModelCreatorThis class is a factory for the bernoulli distribution
tops::ConfigurationReaderThis class reads a configuration file
tops::ContextTreeThis class represents a context tree
tops::ContextTreeNodeThis is a context tree node
tops::DecodableModelInterface defining probabilistic model with the viterbi, forward and backward algorithm
tops::DegenerateDistributionA probabilistic model that emits a constant integer value
tops::DiscreteIIDModelThis represent probability distributions over a finite set of symbols
tops::DiscreteIIDModelCreatorThis class is a factory for the finite discrete distribution
tops::DoubleMapParameterValueProbability table
tops::DoubleParameterValueDouble parameter value
tops::DoubleVectorParameterValueDouble vector parameter value
tops::FactorableModelAbstract class defining models in which the likelihood of the sequence is factorable in the sense that they can be expressed as a product of terms evaluated at each position in a sequence
tops::FactorableModelPrefixSumArrayThis class provides an interface for working with the prefix sum arrays
tops::FastaSequenceFormatFasta Format
tops::FixedSequenceAtPositionA decorator that forces the emission of the same sequence at a fixed position of the sequence
tops::GeneralizedHiddenMarkovModelThis is a class representing Hidden semi-Markov Models
tops::GeneralizedHiddenMarkovModelCreatorThis class is a factory for the finite discrete distribution
tops::GHMMExplicitDurationStateGHMM Explicit duration state
tops::GHMMSignalStateGHMM signal states
tops::GHMMStateRepresents a GHMM State
tops::HiddenMarkovModelThis class represents a hidden markov model
tops::HiddenMarkovModelCreatorThis class is a factory for the finite discrete distribution
tops::InhomogeneousFactorableModelInterface defining inhomogeneous models in which the likelihood of the sequence is factorable in the sense that they can be expressed as a product of terms evaluated at each position in a sequence
tops::InhomogeneousMarkovChainInhomogeneous Markov chain
tops::InhomogeneousMarkovChainCreatorThis class is a factory for the variable length markov chain
tops::IntParameterValueInteger parameter value
tops::IntVectorParameterValueInteger vector parameter value
tops::MaximumDependenceDecompositionMaximum Dependence Decomposition: not implemented yet
tops::MultipleSequentialModelThis class is a model that concatenates multiple models
tops::MultipleSequentialModelCreatorThis class is a factory for the Target Model
tops::NullPrefixSumArrayThis class is a generic prefix sum array
tops::PairDecodableModelInterface defining probabilistic model with the viterbi, forward and backward algorithm for pairs of sequences
tops::PairHiddenMarkovModelCreatorThis class is a factory for the finite discrete distribution
tops::PhasedFactorableModelEvaluationAlgorithmEvaluation algorithm for factorable models
tops::PhasedRunLengthDistributionProvides mechanisms to control the phase of a probabilistic model
tops::PrefixSumArrayThis class provides an interface for working with the prefix sum arrays
tops::ProbabilisticModelThis is an abstract class representing a generative probabilistic model
tops::ProbabilisticModelCreatorRepresents an algorithm to create a probabilistic model
tops::ProbabilisticModelCreatorClientCreates a new probabilistic model
tops::ProbabilisticModelDecoratorDecorator for the probabilistic model
tops::ProbabilisticModelParametersThis class registers a set of parameters
tops::ProbabilisticModelParameterValueRepresents a parameter value
tops::SequenceEntryRepresent a sequence entry
tops::SequenceFactoryProvides factory methods for creating objects of type Sequence
tops::SequenceFormatRepresents a format for the sequence
tops::SequenceFormatManagerSequence Format Manager
tops::SimilarityBasedSequenceWeightingThis class is the implementation of Similiarity Based Sequence Weighting
tops::SimilarityBasedSequenceWeightingCreatorThis class is a factory for the Target Model
tops::SmoothedHistogramBurgeCreates a smoothed histogram using Burge algorithm
tops::SmoothedHistogramKernelDensityEstimates a smoothed histogram using kernel density estimation
tops::SmoothedHistogramStankeUse this to create a smoothed histogram
tops::StringMapParameterValueString vector parameter value
tops::StringParameterValueString parameter value
tops::StringVectorParameterValueString vector parameter value
tops::SymbolThis class represents a symbol
tops::TargetModelThis class is the Target Model
tops::TargetModelCreatorThis class is a factory for the Target Model
tops::TrainDiscreteIIDModelCreates a Multinomial Distribution
tops::TrainFixedLengthMarkovChainCreates a fixed length markov chain
tops::TrainGHMMTransitionsCreatorThis class is a factory for the Multinomial Distribution
tops::TrainHMMBaumWelchCreates a HMM using Baum-Welch
tops::TrainInterpolatedMarkovChainCreates a fixed length markov chain
tops::TrainInterpolatedPhasedMarkovChainTrain a InterpolatedPhased Markov Chain
tops::TrainPhasedMarkovChainTrain a Phased Markov Chain
tops::TrainPhasedMarkovChainContextAlgorithmTrain a Phased Markov Chain using the Context Algorithm
tops::TrainPHMMBaumWelchCreates a HMM using Baum-Welch
tops::TrainSimilarityBasedSequenceWeightingCreates a similarity based sequence weighting model
tops::TrainVariableLengthInhomogeneousMarkovChainTrain a inhomogeneous VLMC
tops::TrainVariableLengthMarkovChainThis class trains the Variable Length Markov Chain using the context algorithm
tops::TrainWeightArrayModelA creator that trains a Weight Array Model
tops::UniformGCModelThis class is the Target Model
tops::VariableLengthMarkovChainThis class is a Variable Length Markov Chain
tops::VariableLengthMarkovChainCreatorThis class is a factory for the variable length markov chain