ToPS
TrainGHMMTransitions.cpp
00001 /*
00002  *       TrainGHMMTransitions.cpp
00003  *
00004  *       Copyright 2011 Andre Yoshiaki Kashiwabara <akashiwabara@usp.br>
00005  *                      Ígor Bonádio <ibonadio@ime.usp.br>
00006  *                      Vitor Onuchic <vitoronuchic@gmail.com>
00007  *                      Alan Mitchell Durham <aland@usp.br>
00008  *
00009  *       This program is free software; you can redistribute it and/or modify
00010  *       it under the terms of the GNU  General Public License as published by
00011  *       the Free Software Foundation; either version 3 of the License, or
00012  *       (at your option) any later version.
00013  *
00014  *       This program is distributed in the hope that it will be useful,
00015  *       but WITHOUT ANY WARRANTY; without even the implied warranty of
00016  *       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00017  *       GNU General Public License for more details.
00018  *
00019  *       You should have received a copy of the GNU General Public License
00020  *       along with this program; if not, write to the Free Software
00021  *       Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
00022  *       MA 02110-1301, USA.
00023  */
00024 
00025 #include "TrainGHMMTransitions.hpp"
00026 #include "DiscreteIIDModelCreator.hpp"
00027 #include "DiscreteIIDModel.hpp"
00028 #include "ConfigurationReader.hpp"
00029 #include "GeneralizedHiddenMarkovModel.hpp"
00030 #include "ProbabilisticModelCreatorClient.hpp"
00031 #include "Alphabet.hpp"
00032 #include "Symbol.hpp"
00033 #include "ProbabilisticModelParameter.hpp"
00034 #include "TrainFixedLengthMarkovChain.hpp"
00035 #include <boost/algorithm/string.hpp>
00036 
00037 namespace tops {
00038   ProbabilisticModelPtr TrainGHMMTransitionsCreator::create(ProbabilisticModelParameters & parameters) const {
00039     ProbabilisticModelParameterValuePtr ghmm_model_par = parameters.getMandatoryParameterValue("ghmm_model");
00040     GeneralizedHiddenMarkovModelPtr result = GeneralizedHiddenMarkovModelPtr(new GeneralizedHiddenMarkovModel());
00041 
00042     if(ghmm_model_par == NULL)
00043       {
00044         std::cerr << help() <<std::endl;
00045         return result;
00046       }
00047 
00048     ProbabilisticModelCreatorClient creator;
00049     std::string ghmm_file_name = ghmm_model_par->getString();
00050     ProbabilisticModelPtr ghmm = creator.create(ghmm_file_name);
00051 
00052     ProbabilisticModelParameters trainFixedMarkovChain;
00053     trainFixedMarkovChain.add("training_algorithm", StringParameterValuePtr(new StringParameterValue("FixedLengthMarkovChain")));
00054     trainFixedMarkovChain.add("order", IntParameterValuePtr(new IntParameterValue(1)));
00055     trainFixedMarkovChain.add("training_set", parameters.getMandatoryParameterValue("training_set"));
00056     trainFixedMarkovChain.add("pseudo_counts", IntParameterValuePtr(new IntParameterValue(0)));
00057 
00058 
00059     ProbabilisticModelParameters ghmmParameters = ghmm->parameters();
00060 
00061     trainFixedMarkovChain.add("alphabet", ghmmParameters.getOptionalParameterValue("state_names"));
00062     TrainFixedLengthMarkovChainPtr markovChainTraining = TrainFixedLengthMarkovChainPtr(new TrainFixedLengthMarkovChain());
00063     ProbabilisticModelPtr markovChain  = markovChainTraining->create(trainFixedMarkovChain);
00064     ProbabilisticModelParameters markovChainParameters = markovChain->parameters();
00065 
00066     ProbabilisticModelParameterValuePtr probabilities_par = markovChainParameters.getMandatoryParameterValue("probabilities");
00067 
00068     ghmmParameters.set("transitions", probabilities_par);
00069 
00070     ProbabilisticModelPtr m= creator.create(ghmmParameters);
00071     return m;
00072   }
00073 }