
1

ToPS: A framework to manipulate probabilistic models of
sequence data
Kashiwabara, André Yoshiaki1,2, Bonadio, Ígor1, Durham, Alan Mitchell1,∗

1 Department of Computer Science, Instituto de Matemática e Estat́ıstica, Universidade
de São Paulo, São Paulo, Brazil
2 Computer engineering, Federal University of Technology, Paraná, Brazil
∗ E-mail: Corresponding aland@usp.br

Using ToPS

In this document we show how to use ToPS through examples. For the sake of brevity we present only
the relevant files, the complete set is available with the download of ToPS source code. ToPS assumes
that files containing input sequences are either in FASTA format (using the -F option in the command
lines) or that each line starts with the sequence name, followed by a colon and the input sequence (in
this section we assume the second option).

We will use the problem of modeling CpG islands in a genomic sequence with an HMM with two
states [1]: one for characterizing CpG islands, another to characterize “generic” genomic sequences. We
will assume that the probability of exchanging states is 0.002, and that the probability of observing the
nucleotides in CpG islands is: A : 0.156;G : 0.344;C : 0.344;T : 0.155. Figure 1 shows the HMM.

Figure 1. An illustrative example of HMM.

Manually describing probabilistic models

To specify this HMM, we need to describe a set of states, the set of observed symbols, the initial probability
distribution, the transition matrix, and the probability distributions of the emissions. The cpg island.txt
file, depicted below, describes the parameters of the HMM representing the CpG island problem: (i)
state names is a list with the labels associated to states; (ii) observation symbols is a list of arbitrary
strings describing each of the observation symbols (in our case, the list of nucleotides); (iii) transitions
specifies the transition probabilities between hidden states; (iv) emission probabilities specifies the emis-
sion probabilities for each hidden state; (v) and initial probabilities specifies the probabilities of each
state being the first state in a simulation.

cpg island.txt
model_name="HiddenMarkovModel"

state_names =

("CPG", "NONCPG")

observation_symbols =

("A", "C", "G", "T")

transitions =

("NONCPG" | "CPG": 0.002;

2

"NONCPG" | "NONCPG": 0.998

"CPG" | "CPG": 0.998;

"CPG" | "NONCPG": 0.002;)

emission_probabilities =

("A" | "CPG": 0.156;

"C" | "CPG": 0.344;

"G" | "CPG": 0.344;

"T" | "CPG": 0.155;

"A" | "NONCPG": 0.25;

"C" | "NONCPG": 0.25;

"G" | "NONCPG": 0.25;

"T" | "NONCPG": 0.25)

initial_probabilities =

("CPG": 0.5; "NONCPG": 0.5)

We will use the cpg island.txt file with other applications of ToPS in the next sections.

Training the models: parameter inference

If the user has annotated examples of CpG islands, then he may improve the parameters of the model by
using training procedures. For HMMs, ToPS includes two training algorithms: Maximum Likelihood and
Baum-Welch algorithm [2]. The Baum-Welch algorithm describes an iterative procedure that tries to find
the maximum likelihood estimates of the parameters using a pre-defined HMM as the initial model, and
the observed emissions as training data. With annotated sequences a good alternative is the Maximum
Likelihood algorithm, which we show in our example.

To specify the details of the training procedure, we use another text file, which we will call cpg island bw train.txt :

cpg island ml train.txt
training_algorithm = "MaximumLikelihoodHMM"

training_set = "trainhmm_ml.sequences"

initial_specification = "cpg_island.txt"

The training set file contains, in this case, a set of pairs of strings, the first string of each pair with
the emissions and the second string with the states. The initial specification file needs to include
the model name, the alphabet and the states (transition and emission information is not required and, if
provided, constitutes an a priori model).

The program train outputs the description of the estimated model, which the user can redirect into a
file for later use. The following command line will output a specification of the model with the estimated
parameters.

Command line
train -c cpg_island_bw_train.txt

If we want to use the Baum-Welch algorithm, the configuration file is similar:

cpg island bw train.txt
training_algorithm = "BaumWelchHMM"

training_set = "trainhmm_bw.sequences"

initial_specification = "cpg_island.txt"

maxiter=300

3

The difference now is that the training set includes only strings with emission sequences (no states),
and that the initial specification needs to include emission and transition probabilities. The user can also
specify the maximum number of iterations of the algorithm with the maxiter parameter (the default is
500).

Simulating: sampling from the model

Simulation of probabilistic models is a useful procedure to illustrate and validate probabilistic models.
The program simulate, which samples sequences from a probabilistic model, requires as parameters the
length and the number of sequences to be generated. For example, the command line below determines
the generation of 10 sequences, each with length 1000, using the CpG island model in standard output
(screen). In this case, since we are using an HMM, the output consists of pairs of sequences (the second
sequence of the pair corresponding to the hidden state labels).

Command line
simulate -m cpg_island.txt -n 10 -l 1000 -h

The command line parameters of the simulate program are:

• -m specifies the name of the file containing the model description.

• -n specifies the number of sequences that will be generated.

• -l specifies the length of each sequence.

• -h determines the generation of the symbols and the hidden state labels.

Decoding input sequences

With probabilistic models for which the states do not correspond to individual symbols, decoding is an
essential part of the recognition problem. In ToPS, decoding uses the Viterbi algorithm [2], implemented
by the program viterbi decoding. In this case, the input model is an HMM or a GHMM. With the
command line below, the program viterbi decoding reads the file in.txt and, using the model specified in
the file cpg island generates the sequence of states visited in the most probable path of the model for
each sequence. The result is presented in standard output.

Command line
viterbi_decoding -m cpg_island.txt < in.txt

The command line parameter for the viterbi decoding program is:

• -m specifies the file containing the model.

Bayesian classifiers

When we have a set of pre-defined sequence families each specified by a different probabilistic model, we
can use a Bayesian classifier to decide to which family a given sequence belongs. For each sequence, the
Bayesian classifier selects the family that corresponds to the model with the highest posterior probability.
In ToPS, the program bayes classifier implements the Bayesian classifier. Based on a configuration
file containing a list of specified probabilistic models and the a priori probabilities, this program reads
sequences from the standard input and returns, for each sequence, the posterior probabilities of each

4

sequence name logP (S|CPG) P (CPG|S) logP (S|NONCPG) P (NONCPG|S) classification
seq1 -141.029 0.0831703 -138.629 0.916827 NONCPG
seq2 -132.381 0.9981 -138.629 0.00192936 CPG

Table 1. An example of bayesian classifier ’s output.

model. In box bayes classifier.txt, we show an example of such a configuration file. Using our CpG island
example we can model it with two Markov chains [1], one to characterize CpG islands and another to
characterize general genomic sequences. Then we can build a Bayesian classifier using the two models,
and apply this classifier to candidate sequences. We will need then first to describe two Markov models,
train each one, and with the trained files, build a classifier:

bayes classifier.txt
classes =

("CPG": "cpg_island_markov_chain.txt";

"NONCPG": "uniform_markov_chain.txt")

model_probabilities =

("CPG": 0.5;

"NONCPG": 0.5)

The program reads from standard input and prints to standard output, so a sample would be:

Command line
bayes_classifier -c bayes_classifier.txt \

< sequences.in

The program output is a table in CSV (comma separated values) format, which is compatible with
most spreadsheet programs. The rows are showing, from left to right the name of each sequence, the
log-likelihood of the sequence given each model, the a posteriori probabilities of each model, and the
predicted classification of the sequence. An example of result produced by the command above is at
Table 1.

GHMMs

Another situation when we need to combine probabilistic models is when we want to segment and label
sequence data where different parts of a sequence are better modeled by different models. This can be
accomplished with the use of GHMMs. Each state of a GHMM emits words with probabilities given
by two submodels: (i) the observation model; (ii) and the duration model (the length of the observed
sequence). With ToPS, the user can select any implemented probabilistic model to characterize the
observation model, and use either a histogram or a geometric distribution to represent the duration
distribution. Using the set of tools described in this paper, the user can train each submodel and then
combine it in a GHMM architecture.

GHMMs are useful in Bioinformatics to represent the structure of genes. As an illustrative example
we will use a simplified model for a bacterial gene. In bacteria, genes are regions of the genome with a
different composition, specific start and stop signals, and noncoding regions separating different genes.
Figure 2 illustrates this gene model. The model has four states: NonCoding state, representing the
intergenic regions, with geometric duration distribution (represented by a self transition in the figure);
Start and Stop states , representing the signals at the boundaries of a gene, with a fixed duration

5

Figure 2. GHMM that represents protein-coding genes in bacteria.

distribution ; Coding, representing the coding region of a gene, with an i.i.d. duration distribution. Box
ghmm.txt shows the description of the corresponding model for nonToPS.

The parameters state names, observation symbols, initial probabilities, and transitions are configured
in the same way as in the case of the HMM model, described above.

We have to specify the models that the GHMM will use, either by naming a file that contains its
description or by inlining its description in the GHMM specification file. In our example, the GHMM uses
five submodels: (i) noncoding model (a DiscreteIIDModel inlined in the GHMM specification); (ii) cod-
ing model (in file “coding.txt”) ; (iii) start model (in file “start.txt”); (iv) stop model (in file “stop.txt”);
(v) coding duration model (in file “coding duration.txt”).

After specifying the models, we have to describe the configuration of each state. ToPS assumes that
the GHMM has two classes of states: (i) Fixed-length states, that emit fixed length words, and (ii)
variable-length states, that emit words with lengths given by a probability distribution. There are two
types of variable-length states: states with geometric distributed duration and states with non-geometric
distributed duration. When specifying any state, the user have to specify the observation model using the
parameter observation. States with geometric duration distribution are specified with a self transition,
states with fixed-length dueation the user should use the parameter sequence length, and other states
should use the parameter duration.

In the file ghmm.txt, we have two fixed-length states (Start, and Stop) and two variable-length states
(NonCoding, and Coding):

• Start state, with start model as the observation model.

• Stop state, with stop model as the observation model.

• NonCoding state, with noncoding model as the observation model, and durations given by a geo-
metric distribution in which the probability of staying in the same state is 0.999.

• Coding state, with coding model as the observation model, and durations given by the coding duration model.

ghmm.txt
model_name = "GeneralizedHiddenMarkovModel"

state_names =

("NonCoding",

"Start",

"Coding",

"Stop")

observation_symbols =

("A", "C", "G", "T")

6

initial_probabilities =

("NonCoding": 1.0)

transitions =

("NonCoding" | "NonCoding": 0.999;

"Start" | "NonCoding": 0.001;

"Coding" | "Start": 1.0;

"Stop" | "Coding": 1.0;

"NonCoding" | "Stop": 1.0)

noncoding_model =

[model_name = "DiscreteIIDModel"

alphabet = ("A", "C", "G", "T")

probabilities=(0.25, 0.25, 0.25, 0.25)]

coding_model = "coding.txt"

start_model = "start.txt"

stop_model = "stop.txt"

coding_duration_model="coding_duration.txt"

NonCoding =

[observation = noncoding_model]

Start =

[observation =start_model

sequence_length = 15]

Stop =

[observation = stop_model

sequence_length = 15]

Coding =

[observation = coding_model

duration = coding_duration_model]

The user can use ToPS to estimate the parameters of each submodel using the train program. To
specify the duration of non-geometric and non-fixed states, we use the i.i.d model with a list of sizes.
After all submodels (observation , and duration) were estimated, the user can use ToPS to estimate also
the transition probabilities of the GHMM. The file train transitions.txt specifies the training algorithm
to the train program:

train transitions.txt
training_algorithm="GHMMTransitions"

training_set="train.txt"

ghmm_model="ghmm.txt"

train.txt contains the sequence of states, and ghmm.txt describes the initial GHMM model.
To decode a sequence with the GHMM model we use the same command we use for HMMs:

Command line
viterbi_decoding -m ghmm.txt < sequences.txt

Characterizing CpG Islands with a GHMM

CpG islands (CGI) are genomic regions of great interest due to their relation with gene regulation. These
regions are commonly present in the promoter region of the genes. The CGI sequences typically have high
G+C content with a significant high frequency of Cs followed by Gs. CGIs are also related to the DNA
methylation that occurs typically after the C nucleotide. The presence of methylated regions can inhibit

7

the binding of transcription factors and therefore inhibit gene expression. Large scale experiments to
detect differentially methylated regions use a CGI list as a reference, stating the importance of producing
high quality CGI lists [3].

The use of Hidden Markov Model to define CGI was described in [1] and a more accurate model in [3].
However, hidden Markov models assume that the length of each region is geometrically distributed and
the observed symbols are conditionally independently distributed. With a generalized hidden Markov
model we can use different type of model to represent CGI and non-CGI regions, and also characterize
the length of CGI regions with a distribution based on known data. In this section we show how we can
use this ideas in ToPS to implement CGI characterization.

Our GHMM has only two states, shown in Figure ??: CPG and NONCPG. We will model
NONCPG as a state with a geometric run-length distribution represented by a self transition, and
the state CPG with an i.i.d. run-length distribution based on an histogram of known CPG island sizes.
To characterize both CPG and NONCPG we will use Variable Length Markov Chains (VLMCs). VLMCs
have the ability of representing dependencies of arbitrary length, and we hypothesize that this model can
improve CPG detection.

Datasets

To characterize CpG islands and their lengths we used 1000 randomly chosen sequences from the CGI list
of the UCSC Genome Browser [4]. To characterize non-CpG parts of a sequence we used 1000 randomly
selected sequences of size 1000 from the human hg18 genome.

We used as a validation set the sequences from the hg18 assembly. We compared our results with two
independentt CGI list: (i) CGI list obtained using HMM [3] stored as “Custom Annotation Tracks” in the
UCSC Genome Browser; (ii) CGI list provided by UCSC Genome Browser [4]. We used the same method
described in Glass and collaborators [5] to assess the quality of the CGI lists where the transcription start
sites (TSS) of Refseq genes are used as references.

Building and training the models

To implement this system in ToPS we initially train the two VLMCs that will constitute the states of
the GHMM. To do this we use the train program and the algorithm Context [6, 7]. We will run this
algorithm for different values of the parameter (cut), beginning at value zero and ending at value 3, with
0.1 increments, and use BIC (Bayesian Information Criteria) [8] for model selection. This procedure is
specified in the configuration files below, which also specify the input alphabet (nucleotides) and the
location of the training sets:

train vlmc cpg.txt
training_algorithm= "ContextAlgorithm"

alphabet = ("A", "C", "G", "T")

model_selection_criteria="BIC"

begin = ("cut" : 0)

end = ("cut": 3)

step=("cut": 0.1)

training_set="dataset/cpg_hg18_random.fa"

train vlmc notcpg.txt
training_algorithm= "ContextAlgorithm"

alphabet = ("A", "C", "G", "T")

model_selection_criteria="BIC"

8

begin = ("cut" : 0)

end = ("cut": 3)

step=("cut": 0.1)

training_set="dataset/not_cpg_hg18_random.fa"

Running the train program will generate files with the VLMC models:
Command line

train -c cfg/train_vlmc_cpg.txt -F > model/cpg_vlmc.txt

Command line
train -c cfg/train_vlmc_notcpg.txt -F > model/not_cpg_vlmc.txt

We will also need to characterize the lengths of the CpG islands, to model the run length of the CPG
state in our GHMM, . The configuration for the train program is very simple specifying only the training
algorithm (Kernel Density [9]) and the training set:

train cpg duration.txt
training_algorithm= "SmoothedHistogramKernelDensity"

training_set="dataset/cpg_lengths.txt"

Running train produces the i.i.d. model:
Command line

train -c cfg/train_cpg_duration.txt > model/cpg_duration.txt

Once we have all the trained models, we specify the GHMM with another configuration file:

cpg island ghmm.txt
model_name = "GeneralizedHiddenMarkovModel"

observation_symbols = ("A", "C", "G", "T")

state_names = ("NONCPG", "CPG")

initial_probabilities = ("CPG": 0.0; "NONCPG": 1)

terminal_probabilities = ("NONCPG": 0.5; "CPG": 0.5)

transitions = ("CPG" | "NONCPG": 0.0001;

"NONCPG" | "NONCPG": 0.9999;

"NONCPG" | "CPG": 1)

cpg_duration = "cpg_duration.txt"

cpg_observation = "cpg_vlmc.txt"

noncpg_observation = "not_cpg_vlmc.txt"

Description of the CPG and NONCPG states

CPG = [duration="cpg_duration"

observation = "cpg_observation"]

NONCPG = [observation = "noncpg_observation"]

Evaluating the results

We can apply our model with the viterbi decoding program to label the ENCODE regions. To assess the
quality of our results we compared them with the UCSC genome browser CGI’s and with the HMM’s
annotated CGI using the methodology proposed by Glass and collaborators [5], where the success of CGI
prediction is measured by the rate of TSS regions covered by the CGI predictions.

9

Using other models

We have presented the use of ToPS to specify and train HMMs. In this section, we show how to specify
and train the other available probabilistic models.

Independent Identically Distributed Model

We specify a discrete i.i.d. model using a vector of probabilities values. The file fdd.txt describes a
distribution of two symbols: symbol Sun with probability 0.2, and symbol Rain with probability 0.8.

fdd.txt
model_name = "DiscreteIIDModel"

alphabet = ("Sun", "Rain")

probabilities = (0.2, 0.8)

Discrete i.i.d. model can also be used to represent histograms. In this case, the alphabet parameter
is not necessary. We can estimate a smoothed histogram using the Kernel Density Estimation [9]. The
file histogram.txt is an example of a configuration file for the train program.

histogram.txt
train_algorithm = "SmoothedHistogramKernelDensity"

training_set = sequences.txt

Variable length Markov chain

VLMCs are described by specifying the distribution associated with each context. The vlmc.txt file shows
an example.

vlmc.txt
model_name = "VariableLengthMarkovChain"

alphabet = ("0", "1")

probabilities = ("0" | "": 0.5;

"1" | "": 0.5;

"0" | "1": 0.5;

"1" | "1": 0.5;

"0" | "0": 0.1;

"1" | "0": 0.9;

"0" | "1 0": 0.7;

"1" | "1 0": 0.3;

"0" | "1 1": 0.4;

"1" | "1 1": 0.6)

To estimate the probabilities of a VLMC, we can apply the Context algorithm [7]. The contextAlgo-
rithm.txt file specifies the task of the program train.

contextAlgorithm.txt
training_algorithm = "ContextAlgorithm"

alphabet = ("0", "1")

cut = 0.5

training_set = "input.txt"

10

Inhomogeneous Markov model

To create a inhomogeneous Markov model, we have to specify the conditional probabilities for each
position of the sequence. The file ihm.txt has an example of how we can specify this model.

ihm.txt
model_name = "InhomogeneousMarkovChain"

p1 = ("A" | "" : 0.97;

"C" | "" : 0.01;

"G" | "" : 0.01 ;

"G" | "" : 0.01)

p2 = ("A" | "" : 0.01;

"C" | "" : 0.97;

"G" | "" : 0.01 ;

"G" | "" : 0.01)

p3 = ("A" | "" : 0.01;

"C" | "" : 0.01;

"G" | "" : 0.97 ;

"G" | "" : 0.01)

position_specific_distribution = ("p1","p2","p3")

phased =0

alphabet = ("A", "C", "G", "T")

The position specific distribution argument uses the parameters p1, p2, and p3 to specify respectively
the distributions for the positions 1, 2, and 3 of the sequence.

The file wam.txt specifies a training procedure, described in [10], for an inhomogeneous Markov chain.

wam.txt
training_algorithm = "WeightArrayModel"

order = 2

training_set = "train.txt"

alphabet = ("A", "C", "G", "T")

sequence_length = 10

vicinity_length = 0

Using model selection when training a probabilistic model

Many models would have different dimensionality which are defined by the user during the training
procedure. Typical example includes Markov chain models in which the user has to choose the value of
the order. To help find the best set of such parameters. ToPS contains two model selection criteria that
the user can use with a training algorithm.

11

• Bayesian Information Criteria (BIC) [8]: This criteria selects the model with the largest value for
the formula below:

log(Maximum Likelihood)− 1

2
(number of independently adjusted parameters)

× log(sample size)

• Akaike Information Criteria (AIC) [11]: This criteria selects the model with the smallest value for
the formula:

(−2) log(Maximum Likelihood) + 2(number of independently adjusted parameters)

To run a model selection procedure the user have to specify four arguments:

• model selection criteria specifies the model selection criteria: BIC, or AIC.

• begin specifies the set of parameters to be tested and their initial values.

• end specifies the final values for the parameters specified above

• step specifies the increment on the values of each of the parameters being tested.

For example, the file bic.txt specifies that ToPS will use BIC selection criteria. The training proce-
dure will calculate the BIC values for the estimated VLMC for each cut in the set {0.0, ..., 1.0}, and it
will return the model with the preferred BIC value.

bic.txt
training_algorithm = "ContextAlgorithm"

training_set = "sequences.txt"

model_selection_criteria = "BIC"

begin = ("cut": 0.0)

end = ("cut": 1.0)

step = ("cut": 0.1)

alphabet = ("0", "1")

References

1. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: Probabilistic
models of proteins and nucleic acids. Cambridge University Press.

2. Rabiner LR (1989) A tutorial on Hidden Markov Models and selected applications in speech recog-
inition. In: Proccedings of the IEEE. volume 77, pp. 257-286.

3. Wu HAO, Caffo B, Jaffee HA, Irizarry RA (2010) Redefining CpG islands using hidden Markov
models 1: 499–514.

4. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, et al. (2002) The Human Genome
Browser at UCSC. Genome Research 12: 996–1006.

12

5. Glass JL, Thompson RF, Khulan B, Figueroa ME, Olivier EN, et al. (2007) CG dinucleotide
clustering is a species-specific property of the genome. Nucleic acids research 35: 6798–807.

6. Rissanen J (1983) A universal data compression system. Information Theory, IEEE Transactions
on 29: 656–664.

7. Galves A, Löcherbach E (2008) Stochastic chains with memory of variable length. arXiv math.PR.

8. Schwarz G (1978) Estimating the dimension of a model. The Annals of Statistics 6: 461–464.

9. Sheather S (2004) Density estimation. Statistical Science 19: 588–597.

10. Burge C (1997) Identification of genes in human genomic DNA. Ph.D. thesis, Stanford University.

11. Akaike H (1974) A new look at the statistical model identification. IEEE transactions on automatic
control AC-19: 716-723.

